# 2021대한재활의학회 추계학술대회 런천심포지움

#### 서울대학교 의과대학 재활의학교실

이시욱

# NABOTA® (Prabotulinumtoxin A)





Ref) 1. Prabotulinumtoxin A : Registered as NABOTATM in Korea and Asia, JEUVEAUTM in the US, and NUCEIVATM in Canada and EU. 2. Evolus Press Release, Feb/01/2019 3. Evolus Press Release, Oct/01/2019 4. Kenneth R. Beer et al. Dermatol Surg. 2019;45(11):1381-1393

5. The United States Patent and Trade Mark Office; Registration no. 9,512,418 6. Rzany BJ et al. Aesthet Surg J. 2019; 40(4):413-429

#### Patented process (HI-PURE<sup>TM</sup> technology)



**NABOTA** 

#### Reduced Impurity



#### Purity Test Result (SEC-HPLC)



✓ 나보타는 고순도 보툴리눔 톡신을 생산할 수 있는 제조시설에서 생산된 제품입니다

#### Product profile



| 제품명   | 나보타®주                  |           |                        |           |  |
|-------|------------------------|-----------|------------------------|-----------|--|
| 성분    | Botulinum toxin type A |           |                        |           |  |
| 용량    | 50 Units               | 100 Units | 150 Units              | 200 Units |  |
| 급여 여부 | 비급여                    | 비급여       | 뇌졸중 후<br>상지근육 경직<br>급여 | 비급여       |  |

🞊 대웅제약



## A Randomized Controlled Trial to Determine Dose Response Relationship for NABOTA in Finger Spasticity

서울대학교 의과대학 재활의학교실

이 시 욱



## Method 2

- Injection was performed USG guidance
- Injected muscles
  - FDP, FDS : 50% of each assigned dose

## Outcomes

- Primary outcome: MAS
- Secondary outcome
  - Fugl-Myer assessment
  - Wolf assessment
  - Hand grip strength
- Evaluated at
  - Baseline
  - 2, 4,8, 12 weeks after injection

## Results (1)

• 72 patients were analyzed per protocol





Figure 1. Dose–response analysis of finger flexor spasticity measured by modified Ashworth Scale (MAS): (A) MAS measured at each point, (B) MAS changes from baseline depending on BTX-A dose at 2 and 4 weeks after BTX-A injection. \* P < 0.05 compared with group 1 at each measure point (by ANOVA test with post-hoc analysis of Tukey HSD)

## Results (2)







Figure 2. Dose-response analysis of upper extremity functional assessments measured by (A) Fugl-Myer upper extremity assessment, (B) Wolf motor assessment, and (C) Hand grip strength.

#### Conclusion

• Botullinum toxin A reduced post-stroke spasticity in a dosedependent manner in finger flexor.

## Results of Pooled Study

## Table 1. Demographics of the patients. (N=205)

| Sex (male)                     | 155 (75.6%)       |                 |
|--------------------------------|-------------------|-----------------|
| Age at stroke (year)           | 52.9 ±12.0        |                 |
| <b>Disease duration (year)</b> | 6.90 ±5.74        |                 |
| Laterality (right)             | 106 (51.7%)       |                 |
| Injection dose (IU)            | 287.0 ±69.13      |                 |
| Elbow flexor                   | Initial MAS       | 2.43 ±1.24      |
|                                | Improved patients | 80 (39.6%)      |
| Wrist volar flexor             | Initial MAS       | $2.68 \pm 1.07$ |
|                                | Improved patients | 111 (54.1%)     |
| Finger flexor                  | Initial MAS       | $3.00 \pm 1.12$ |
|                                | Improved patients | 108 (53.2%)     |

#### Methods

- The muscle groups were categorized into three groups (elbow flexor, wrist volar flexor, finger flexor)
- Spasticity was assessed by modified Ashworth Scale (MAS) before and about 1 month after BoNT injection.
- The patients were dichotomized into groups with and without improvement of MAS ≥ 2.
- Random walk oversampling was used for balancing the dataset. Extreme gradient boosting (XGBoost) algorithm, one of the machine learning algorithm, was used to construct the classifier.
- Performance were evaluated by multiple metrics (Prediction accuracy, AUROC, F1 score, Matthews correlation coefficient (MCC))

# Table 2. Clinical factors associated with improved outcomes ( $\Delta$ MAS $\geq$ 2) after BoNT.

| Muscle groups         | <b>Clinical factors</b> | $\Delta MAS < 2$ | ∆MAS ≥2 | p-value |
|-----------------------|-------------------------|------------------|---------|---------|
| Elbow flexor          | initial MAS             | 2.00             | 3.14    | <.001   |
|                       | dilution of<br>BoNT     | 3.93             | 3.25    | .008    |
|                       | female                  | 19.2 %           | 32.5 %  | .030    |
| Wrist volar<br>flexor | initial MAS             | 2.04             | 3.22    | <.001   |
|                       | dilution of<br>BoNT     | 3.88             | 3.48    | .009    |
| Finger flexor         | initial MAS             | 2.47             | 3.28    | <.001   |
|                       | female                  | 17.7 %           | 30.3 %  | .037    |

# Table 3. Evaluation metrics of the classifier predicting the efficacy of BoNT in each muscle group.

| Classifier of Muscle<br>groups | Accuracy | AUC   | F1 score | MCC   |
|--------------------------------|----------|-------|----------|-------|
| Elbow flexor                   | 0.700    | 0.709 | 0.761    | 0.386 |
| Wrist volar flexor             | 0.705    | 0.704 | 0.680    | 0.408 |
| Finger flexor                  | 0.764    | 0.757 | 0.714    | 0.514 |

#### Conclusion

- The present study showed that **high initial MAS**, **low ratio of BoNT dilution**, and **female** were associated with markedly improved outcomes of BoNT for post-stroke spasticity.
- The prediction of markedly improved outcomes of post-stroke spasticity after BoNT in the EF, WVF, and FF was feasible based on clinical and

**BoNT-related factors using a machine learning algorithm.**